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Problem Statement
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Problem Statement (Existing approaches
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Problem Statement (Summary)
e Exiting work has tried to solve the issue by creating wrappers
around the program debuggers and mapping the features.

e Extra metadata generation are required for mapping.

e Using program debugging, causes dependency and compatibility
and integration issues.

e The process is time consuming and challenging process.

e Debugging issue is one of the main barriers to adoption of MDD.



Proposed Solution (Platform Independent Debugger)
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Overall Architecture
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MDebugger (Command Line Interface)
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mdebugger#help

Available Options

"help|h" (Show the commands and their options)

"breakpoint|b" -c capsuleName -t name -b -i traceNo(Set breakpoint at start of a transition)
"breakpoint |b" -c capsuleName -t name -e -i traceNo(Set breakpoint at end of a transition)
"breakpoint |b" -c capsuleName -t name -s -r -i traceNo(Remove breakpoint at end of a transition)
"breakpoint |b" -c capsuleName -t name -e -r -i traceNo(Remove breakpoint at end of a transition)
"next|n" -C capsuleName -i traceNo (Execute until next step)

"continue|c" -c capsuleName -i traceNo (Continue execution until next breakpoint)

e -c capsuleName -i traceNo (Run capsule without interrupt)

"modify|m" -c capsuleName -n name -v value -i traceNo(Modify a attribute of capsule)

"view|v" -c capsuleName -v -i traceNo (View the capsule's attributes)

"view|v" -c capsuleName -n count -e -i traceNo(View n last action of capsule's action chain)
"tisEL" -1 traceNo (List running capsules and their current state)

aat B | -C capsuleName -i traceNo (List capsule's configuration including breakpoints and etc)
"1isk j1" -c capsuleName -b -i traceNo (List exiting breakpoint)

"save|s" —-Cc capsuleName -i traceNo (Save existing events)

"connect|con" -h host -p port -i traceNo (Connect to eclipse debugger)



MDebugger Integration with PapyrusRT
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MDebugger Integration
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http://www.youtube.com/watch?v=K630Jp5lNTw

Future Work
e Model-based instrumentation framework.
e Complete the current implementation
e Add debugging facility for action codes

e Automatic root cause analysis using program slicing on action codes

e Generate sequence diagram to present the runtime behaviour
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Conclusion
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We presented a new way of providing debugging at model-level.

Our solution is implemented at model-level using modeling concept
and is not dependent on program debugger or generated code.

Basic features such as setting breakpoints, watch and change variables
are implemented.

Graphical and command line user interface are presented.
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Model Instrumentation
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Provide instrumentation by extending the code generation:

Is a complex task.

Causes maintenance and compatibility issues.

Is platform and tool dependent.

Is hard to validate and verify.

Is not possible to capture all instrumentation requirements by
pre-defined code generation.



Vision
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Create a DSL to enable users to define customized instrumentation at
model level.



The Big Picture
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Progress till now:

e Integration between and Epsilon and PapyrusRT was done.

e Integration with LTTng and Observer as main tracing tools was done.
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Thank You!



