

MDebugger:
A model-based debugger for real-time and embedded

systems

Mojtaba Bagherzadeh, Nicolas Hili, Juergen
Dingel

1

Outline

● Problem Statement

● Solution

● Concepts and Techniques

● MDebugger features

● Future Work

● Conclusion

2

Problem Statement

Step 1:
Design

Step 2: Code
Generation

Step 2:
Build & Run

D
evelopm

ent
D

ebugging

Step 1:
Find Fault in

Generated Code

GDB,JDB,...

Step 2:
Find Fault in
Model or ...

3

Problem Statement (Existing approaches)

C++ JAVA Others

DBG

Models
Debug Command or
Data at Model Level

Binary with
Debugging Symbols

Attach Debug
Data

4

Generated
Code

Debug Command or
Data at Code Level

Mapping

Runtime
ENV

Program Debugger

Mapping

Problem Statement (Summary)

● Exiting work has tried to solve the issue by creating wrappers

around the program debuggers and mapping the features.

● Extra metadata generation are required for mapping.

● Using program debugging, causes dependency and compatibility
and integration issues.

● The process is time consuming and challenging process.
● Debugging issue is one of the main barriers to adoption of MDD.

5

Proposed Solution (Platform Independent Debugger)

Models

Generated
Code

Runtime
ENV

Proposed
Solution

Existing
Solution

Signal
Injection

Debug Command or
Data at Model Level

MDebugger

Instrumented Binary

Events

6

Debug Command or
Data at Model Level

Debug Command or
Data at Code Level

Program Debugger

Binary with
Debugging Symbols

Attach Process
Data

Mapping

Mapping

Overall Architecture

7

IPC
or

TCP
C++

Observer
Capsule

User Defined
Model

Shadow ModelMDebugger

Command Line
Interface

External App
(e.g, eclipse
debugger)

TCP

GUI

Epsilon

MDebugger (Command Line Interface)

8

MDebugger Integration with PapyrusRT

9

MDebugger Integration with PapyrusRT

10

http://www.youtube.com/watch?v=K630Jp5lNTw

Future Work

● Model-based instrumentation framework.

● Complete the current implementation

● Add debugging facility for action codes

● Automatic root cause analysis using program slicing on action codes

● Generate sequence diagram to present the runtime behaviour

11

Conclusion

● We presented a new way of providing debugging at model-level.

● Our solution is implemented at model-level using modeling concept

and is not dependent on program debugger or generated code.

● Basic features such as setting breakpoints, watch and change variables

are implemented.

● Graphical and command line user interface are presented.

12

Model Instrumentation

Provide instrumentation by extending the code generation:

● Is a complex task.
● Causes maintenance and compatibility issues.
● Is platform and tool dependent.
● Is hard to validate and verify.
● Is not possible to capture all instrumentation requirements by

pre-defined code generation.

Vision

Create a DSL to enable users to define customized instrumentation at
model level.

The Big Picture

Use defined
models

Model Transformation

Instrumentation
Rule and

configuration

Refined
models with
trace points

Example of instrumentation rule:
● Trace all state changes.
● Trace all attribute changes that their type is Integer.
● Trace change of attribute x during entry of state 1.

Genare Model
Transformation

Architecture

16

Instrumentation DSL

Progress till now:

● Integration between and Epsilon and PapyrusRT was done.

● Integration with LTTng and Observer as main tracing tools was done.

Thank You!

18

