Queens Cofiiputing “’
Queen's University
Kingston, Ontario, Canada (ue en,S
MDebugger:
A model-based debugger for real-time and embedded
systems

Mojtaba Bagherzadeh, Nicolas Hili, Juergen
Dingel

Outline
e Problem Statement
e Solution
e Concepts and Techniques
e MDebugger features
e Future Work

e Conclusion

Problem Statement

e

StateMachinel

[Statel]%[Statea

A

Step 1:
Find Fault in

Generated Code

g 6 Step 1:
<) / - Design
@ o

5 —
O

3

(¢)

=

-

o

D

O

c

«Q

Q

=

«Q

GDB,JDB,...

>

o 11 (1), dirtystpyg, o +

wrpannts, calles, u;csarguaenty

Step 2: Code &8
Generation

———>

' ;' ‘"”MPWWU’(P’“((GIQI. Bllild & Run
Withess” 4 br s+ *Joroks)e |+

41)ty 0,4

S0y, gy

Yetrue;t o

et gy Iiratum Ir

StateMachinel

o werpannts. callee,u, crarguaents Step 2:
Find Fault in
Farid hasOmProperty (p)sée (d(p),
" Wissiom® 4 by 4 ”gbgnk;)(-‘f'.‘ Model or ... >
WU Iretum (),

wditeloty ilrullmwm I

Problem Statement (Existing approaches

‘s_——__’,’/

Statermachine1

Debug Command or Statel States
Models Data at Model Level -
| [[mapors NN \
{ \)
Debug Command or Others
Generated Data at Code Level C ++ J AVA
Code \ \ :
1; Mapping \
Program Debugger G B
E—t DBG
Rl;gl;\trl\?e Attach Debug The GNU Project Java
Binary with Data Debugger J DB
Debugging Symbols 4

Problem Statement (Summary)
e Exiting work has tried to solve the issue by creating wrappers
around the program debuggers and mapping the features.

e Extra metadata generation are required for mapping.

e Using program debugging, causes dependency and compatibility
and integration issues.

e The process is time consuming and challenging process.

e Debugging issue is one of the main barriers to adoption of MDD.

Proposed Solution (Platform Independent Debugger)

Existing
Solution

Proposed
Solution

Debug Command or

Debug Command or
Data at Model Level

Models Data at Model Level
j r Mapping A
N
Debug Command or
Generated Data at Code Level
Code

) l;Mapping

Program Debugger
Runti Signal ‘ ' Events
unuame . .
Injection
ENV Attach Process

Binary with Data
Debugging Symbols

6

Overall Architecture

\;

e ——

Command Line
Interface User Defined
Model
@ Observer Epsilon
Capsule
GUI ¢~ | Mpebugger <:> <:> Shadow Model

External App IPC [A FPY R S
(e.g, eclipse TCP C++ or

debugger) TCP w4

MDebugger (Command Line Interface)

_y'-’/

mdebugger#help

Available Options

"help|h" (Show the commands and their options)

"breakpoint|b" -c capsuleName -t name -b -i traceNo(Set breakpoint at start of a transition)
"breakpoint |b" -c capsuleName -t name -e -i traceNo(Set breakpoint at end of a transition)
"breakpoint |b" -c capsuleName -t name -s -r -i traceNo(Remove breakpoint at end of a transition)
"breakpoint |b" -c capsuleName -t name -e -r -i traceNo(Remove breakpoint at end of a transition)
"next|n" -C capsuleName -i traceNo (Execute until next step)

"continue|c" -c capsuleName -i traceNo (Continue execution until next breakpoint)

e -c capsuleName -i traceNo (Run capsule without interrupt)

"modify|m" -c capsuleName -n name -v value -i traceNo(Modify a attribute of capsule)

"view|v" -c capsuleName -v -i traceNo (View the capsule's attributes)

"view|v" -c capsuleName -n count -e -i traceNo(View n last action of capsule's action chain)
"tisEL" -1 traceNo (List running capsules and their current state)

aat B | -C capsuleName -i traceNo (List capsule's configuration including breakpoints and etc)
"1isk j1" -c capsuleName -b -i traceNo (List exiting breakpoint)

"save|s" —-Cc capsuleName -i traceNo (Save existing events)

"connect|con" -h host -p port -i traceNo (Connect to eclipse debugger)

MDebugger Integration with PapyrusRT

Flle Edit -7 Diagram Navigate Search Papyrus Project UML-RT Menu Run Window Help

i 0 OO = S NI JNE{ I <MEL S S O S = SN R TR N, WS S e e T e [«] 4% +0~Q~ i@ 5 «
Pl e fletn s 5 B A B e g [Quick Access | i| FEs iy
#r Debug = % i = = 0O |[w-vaniables 2 | % Breakpoints - = W= | =
~ MDebugger [MDebugger launch] Name value
~ i Example Debug target @ varint o fl
¥ i Counter:Counter:0 thread @ varBool false
=[1481236925]: STATEEXITEND @ counter o

1481236925]: TRANISTIONSTART
1481236925]: TRANISTIONEND @ varReal o 3

1481236925]: STATEENTRYSTART @ Current state __Debug_Super_ State_:ConnToDbg:IntailTrans
= [1481236925]: STATEENTRYEND ¢
» & Counter:Counter:1 thread "My new value"

» & Counter:Counter:2 thread

¥ *Counter.di 2% = O E= Outline =2 =
countersM
Statel @ Region
IntailTrans
/entry OpaqueBehavior & state
seralizeltself ® Inital
@ Finalstate
® shallowHi
timeout/...
< Edges ©
“& Transition
. Lnk
- o " ContextLink
@ welcome | countersm 52 |
B console 2 & Tasks [Properties [2! Problems (& Executables = =

MDebugger Console
sending message: 'G058m -c Counter:Counter:0@ -n varString -v "My new value" -1 6'
6| ACK

Waiting for reading H

MDebugger Integration

with PapyrusRT
\ " —

http://www.youtube.com/watch?v=K630Jp5lNTw

Future Work
e Model-based instrumentation framework.
e Complete the current implementation
e Add debugging facility for action codes

e Automatic root cause analysis using program slicing on action codes

e Generate sequence diagram to present the runtime behaviour

11

Conclusion

\ | —

We presented a new way of providing debugging at model-level.

Our solution is implemented at model-level using modeling concept
and is not dependent on program debugger or generated code.

Basic features such as setting breakpoints, watch and change variables
are implemented.

Graphical and command line user interface are presented.

12

Model Instrumentation

. /—\f

Provide instrumentation by extending the code generation:

Is a complex task.

Causes maintenance and compatibility issues.

Is platform and tool dependent.

Is hard to validate and verify.

Is not possible to capture all instrumentation requirements by
pre-defined code generation.

Vision

— /—\

Create a DSL to enable users to define customized instrumentation at
model level.

The Big Picture

___—__'_f'/

-

o

Use defined
models

~

Instrumentation
Rule and
configuration

Genare Model
Transformation

)

Example of instrumentation rule:
Trace all state changes.
Trace all attribute changes that their type is Integer.
Trace change of attribute x during entry of state 1.

Model Transformation >

4 N

Refined
models with
trace points

- /

Architecture

P /——\

Instrumentation DSL

—ARFRPYRUS
REAL T INME

16

Progress till now:

e Integration between and Epsilon and PapyrusRT was done.

e Integration with LTTng and Observer as main tracing tools was done.

— /——\

Thank You!

