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Problem Statement (Existing approaches)
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Problem Statement (Summary)

● Exiting work has tried to solve the issue by creating wrappers 

around the program debuggers and mapping the features.

● Extra metadata  generation are required for mapping.

● Using program debugging, causes dependency and compatibility 
and integration issues.

● The process is time consuming and challenging process.
● Debugging issue is one of the main barriers to adoption of MDD.
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Proposed Solution (Platform Independent Debugger)
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Overall Architecture
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MDebugger (Command Line Interface)
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MDebugger Integration with PapyrusRT
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MDebugger Integration with PapyrusRT
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http://www.youtube.com/watch?v=K630Jp5lNTw


Future Work

● Model-based instrumentation framework.

● Complete the current implementation 

● Add debugging facility for action codes

● Automatic root cause analysis using program slicing on action codes

● Generate sequence diagram to present the runtime behaviour
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Conclusion

● We presented a new way of providing debugging at model-level.

● Our solution is implemented at model-level using modeling concept 

and is not dependent on program debugger or generated code.

● Basic features such as setting breakpoints, watch and change variables 

are implemented.

● Graphical and command line user interface are presented. 
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Model Instrumentation

Provide instrumentation by extending the code generation:

● Is a complex task.
● Causes maintenance and compatibility issues.
● Is  platform and tool  dependent.
● Is hard to validate and verify.
● Is not possible to capture all instrumentation requirements by 

pre-defined code generation.



Vision

Create a DSL to enable users to define customized  instrumentation at 
model level.

 



The Big Picture
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Architecture
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Instrumentation DSL



Progress till now: 

● Integration between and Epsilon and PapyrusRT was done.

● Integration with LTTng and Observer as main tracing tools was done.

 



Thank You!
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